New Construction
previous arrow
next arrow

How Regular Circuit Breakers Keep You Safe

Molded Case Circuit Breaker Trip Unit History

Source Evolution of the Molded Case Circuit Breaker Trip Units and their Value to Customers

Stotz developed a switch that protected from overload and short circuit.
Stotz developed a switch that protected from overload and short circuit.

Even though an 1879 patent filed by Thomas Edison provided a glimpse of the definition of what would become circuit breakers, fuses (use once and throw away) were the standard for the first 30-40 years in power distribution systems.  In 1924, German inventor Hugo Stotz created and patented what was marketed as a re-settable fuse. It was a direct retrofit into common fuse panels of the day. The Stotz fuse incorporated a thermal element to detect and open contacts to clear overloaded or shorted circuits. This was a forerunner of the thermal-magnetic breaker widely used in today’s power distribution systems.

Circuit Breaker and Trip Unit

In order to understand what a trip unit is, let’s revisit the definition of a circuit breaker. A circuit breaker is a mechanical switching device designed to automatically detect and eliminate short circuits and overload current. A trip unit, specifically, is the “brain” of the circuit breaker as its function is to measure physical parameters such as electrical current and decide when to “trip” or rapidly open the mechanical contacts of the circuit breaker. At the bare minimum, a trip unit needs to offer overload and short circuit protection. In regard to the topic of evolution, the trip unit can be as simple as a bi-metallic strip, or now, as advanced as a computer. This evolution has opened the door to so much more than overload and short circuit protection – it’s opened a whole new world of protection, measurement, and control.

Thermal Magnetic Circuit Trip Unit

The basic thermal magnetic circuit trip unit still provides a cost-effective solution for basic circuit protection and remains in widespread use. With the growth of critical electrical loads, the need for accurate and coordinated circuit protection has become much more important. However, the lower accuracy sensitivity offered by a thermal magnetic breaker cannot fully address this increasing demand. These shortcomings are amplified when you need breakers to trip in a coordinated fashion where only the problematic circuit is taken out of service. This is called selectivity and was a primary driver in the evolution from the thermal magnetic trip unit to the electronic trip unit which can provide a much higher degree of accuracy in sensing and responding to trip events.

How a Regular (non AFCI/GFCI) Circuit Breaker Trip Unit Works

Source:  How circuit breaker trip unit works?

Thermal-Magnetic Trip Unit
Thermal-Magnetic Trip Unit

In addition to providing a means to open and close its contacts manually, a circuit breaker must automatically open its contacts when an overcurrent condition is sensed.

The trip unit is the part of the circuit breaker that determines when the contacts will open automatically.

In a thermal-magnetic circuit breaker, the trip unit includes elements designed to sense the heat resulting from an overload condition and the high current resulting from a short circuit. In addition, some thermal magnetic circuit breakers incorporate a “PUSH TO TRIP” button.

Trip Mechanism

The trip unit includes a trip mechanism that is held in place by the tripper bar. As long as the tripper bar holds the trip mechanism, the mechanism remains firmly locked in place.

Trip Unit with Trip Mechanism
Trip Unit with Trip Mechanism

The operating mechanism is held in the “ON” position by the trip mechanism. When a trip is activated, the trip mechanism releases the operating mechanism, which opens the contacts.

The operating mechanism is held in the “ON” position by the trip mechanism.
The operating mechanism is held in the “ON” position by the trip mechanism.

Manual Trip

Some molded case circuit breakers, especially larger breakers, can be manually tripped by pressing the “PUSH TO TRIP” button on the face of the circuit breaker. When the button is pressed the tripper bar rotates up and to the right. This allows the trip mechanism to “unlock” releasing the operating mechanism.

The operating mechanism opens the contacts.

The “PUSH TO TRIP” button also serves as a safety device by preventing access to the circuit breaker interior in the “ON” position. If an attempt is made to remove the circuit breaker cover while the contacts are in the closed (“ON”) position, a spring located under the pushbutton causes the button to lift up and the breaker to trip.

Manual trip mechanism
Manual trip mechanism

Overload Trip

Thermal-magnetic circuit breakers employ a bi-metalic strip to sense overload conditions. When sufficient overcurrent flows through the circuit breaker’s current path, heat build up causes the bi-metalic strip to bend. After bending a predetermined distance, the bi-metalic strip makes contact with the tripper bar activating the trip mechanism.

Thermal-magnetic circuit breakers employ a bi-metalic strip to sense overload conditions.
Thermal-magnetic circuit breakers employ a bi-metalic strip to sense overload conditions.


Circuit breaker contacts
Circuit breaker contacts

A bi-metalic strip is made of two dissimilar metals bonded together. The two metals have different thermal expansion characteristics, so the bi-metalic strip bends when heated. As current rises, heat also rises.

The hotter the bi-metalic becomes the more it bends. After the source of heat is removed, as when the circuit breaker contacts open, the bi-metalic strip cools and returns to its original condition. This allows a circuit breaker to be manually reset once the overload condition has been corrected.

Short Circuit Trip

As previously described, current flow through a circuit breaker’s blow-apart contacts creates opposing magnetic fields. Under normal operating conditions, these opposing forces are not sufficient to separate the contacts. When a short circuit occurs, however, these opposing forces increase significantly.

The current that flows through the contacts also flows through a conductor that passes close to the circuit breaker’s trip unit. At fault current levels, the magnetic field surrounding this conductor provides sufficient force to unlatch the trip unit and trip the breaker.

Short Circuit Trip
Short Circuit Trip

The combined actions of magnetic fields forcing contacts apart while simultaneously tripping the circuit breaker result in rapid interruption of the fault current. In addition, because the magnetic forces are proportional to the current, the greater the fault current, the shorter the time it takes to interrupt the current.

It is important to know that some early molded case circuit breakers were not properly calibrated or had pieces that would become stuck and were essentially less safe than a fuse!

Now Lets see it in action!

Source: Warped Perception Youtube Channel

Leave a Reply